Sufficient condition of a priori estimation for computational complexity of the homotopy method

Mitsunori Makino*, Masahide Kashiwagi, Shin'ichi Oishi, Kazuo Horiuchi

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

A priori estimation is presented for a computational complexity of the homotopy method applying to a certain class of strongly monotone nonlinear equations. In the present paper, a condition is presented for a certain class of uniquely solvable equations, under which an upper bound of a computational complexity of the Newton type homotype method can be a priori estimated. In this paper, a condition is considered in a case of linear homotopy equations including the Newton type homotopy equations. In the first place the homotopy algorithm based on the simplified Newton method is introduced. Then by using Urabe type theorem, which gives a sufficient condition guaranteeing the convergence of the simplified Newton method, a condition is presented under which an upper bound of a computational complexity of the algorithm can be a priori estimated, when it is applied to a certain class of strongly monotone nonlinear equations. The presented condition is demonstrated by numerical experiments.

本文言語English
ページ(範囲)786-794
ページ数9
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E76-A
5
出版ステータスPublished - 1993 5月 1
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Sufficient condition of a priori estimation for computational complexity of the homotopy method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル