Supervised determined source separation with multichannel variational autoencoder

Hirokazu Kameoka, Li Li, Shota Inoue, Shoji Makino

研究成果: Letter査読

55 被引用数 (Scopus)

抄録

This letter proposes a multichannel source separation technique, the multichannel variational autoencoder (MVAE) method, which uses a conditional VAE (CVAE) to model and estimate the power spectrograms of the sources in a mixture. By training the CVAE using the spectrograms of training examples with source-class labels, we can use the trained decoder distribution as a universal generative model capable of generating spectrograms conditioned on a specified class index. By treating the latent space variables and the class index as the unknown parameters of this generative model, we can develop a convergence-guaranteed algorithm for supervised determined source separation that consists of iter-atively estimating the power spectrograms of the underlying sources, as well as the separation matrices. In experimental evaluations, our MVAE produced better separation performance than a baseline method.

本文言語English
ページ(範囲)1891-1914
ページ数24
ジャーナルNeural Computation
31
9
DOI
出版ステータスPublished - 2019 9月 1
外部発表はい

ASJC Scopus subject areas

  • 人文科学(その他)
  • 認知神経科学

フィンガープリント

「Supervised determined source separation with multichannel variational autoencoder」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル