Synthesis of highly-infrared transparent Y2O3–MgO nanocomposites by colloidal technique and SPS

Lihong Liu, Koji Morita*, Tohru S. Suzuki, Byung Nam Kim


研究成果: Article査読

20 被引用数 (Scopus)


Infrared (IR) transparent Y2O3–MgO nanocomposites with a volume ratio of 50:50 were synthesized by combining colloidal and spark-plasma-sintering (SPS) techniques. In order to attain well-dispersed and homogeneous starting Y2O3–MgO nanopowder mixture, the effects of the pH value and the amount of polyetherimide (PEI) dispersant on the suspension stability were studied. Rheological measurement reveals that highly-dispersed and stable suspension was obtained at 7 wt% of PEI dispersant under pH = 10.6. The obtained nanopowders with particle size of 20–30 nm were densified using SPS at several sintering temperatures. The sintered composites show fine grains, narrow grain size distribution and uniform microstructure. The nanocomposite sintered at 1250 °C showed the maximum IR transmittance of 84% at a wavelength range of 2.5–6 μm. The Vickers hardness of the nanocomposite was about 11.9 ± 0.3 GPa, which is significantly higher than those of single phase MgO or Y2O3. Successful fabrication of the high-performance Y2O3–MgO nanocomposite indicates that i) the colloidal technique is an effect method to obtain highly dispersed and homogeneous nanopowders and ii) the SPS technique is a powerful tool to fabricate fine-grained dense transparent ceramics, which are suitable for fabricating IR transparent Y2O3–MgO composite ceramics from commercial starting powders.

ジャーナルCeramics International
出版ステータスPublished - 2020 6月 15

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • セラミックおよび複合材料
  • プロセス化学およびプロセス工学
  • 表面、皮膜および薄膜
  • 材料化学


「Synthesis of highly-infrared transparent Y2O3–MgO nanocomposites by colloidal technique and SPS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。