Tangent loci and certain linear sections of adjoint varieties

Hajime Kaji*, Osami Yasukura

*この研究の対応する著者

研究成果: Article査読

1 被引用数 (Scopus)

抄録

An adjoint variety X (g) associated to a complex simple Lie algebra g is by definition a projective variety in ℙ*(g) obtained as the projectivization of the (unique) non-zero, minimal nilpotent orbit in g. We first describe the tangent loci of X (g) in terms of s-fraktur sign and l-fraktur sign2-triples. Secondly for a graded decomposition of contact type g = ⊕-2≤i≤2gi, we show that the intersection of X (g) and the linear subspace ℙ*(g1) in ℙ*(g) coincides with the cubic Veronese variety associated to g.

本文言語English
ページ(範囲)63-72
ページ数10
ジャーナルNagoya Mathematical Journal
158
DOI
出版ステータスPublished - 2000 6月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Tangent loci and certain linear sections of adjoint varieties」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル