抄録
An adjoint variety X (g) associated to a complex simple Lie algebra g is by definition a projective variety in ℙ*(g) obtained as the projectivization of the (unique) non-zero, minimal nilpotent orbit in g. We first describe the tangent loci of X (g) in terms of s-fraktur sign and l-fraktur sign2-triples. Secondly for a graded decomposition of contact type g = ⊕-2≤i≤2gi, we show that the intersection of X (g) and the linear subspace ℙ*(g1) in ℙ*(g) coincides with the cubic Veronese variety associated to g.
本文言語 | English |
---|---|
ページ(範囲) | 63-72 |
ページ数 | 10 |
ジャーナル | Nagoya Mathematical Journal |
巻 | 158 |
DOI | |
出版ステータス | Published - 2000 6月 |
ASJC Scopus subject areas
- 数学 (全般)