Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries

Hiroki Nara*, Shingo Tsuda, Tetsuya Osaka


研究成果: Article査読

15 被引用数 (Scopus)


The development of lithium-sulfur batteries is associated with many problems. These problems include polysulfide dissolution, the shuttle phenomenon, the low electric and ionic conductivity of S, and the volume change that occurs during charge and discharge. In this review, various elemental techniques for overcoming these problems are summarized from the standpoints of the supporting materials. These techniques include preventing polysulfide dissolution from the cathodes through physical and chemical adsorption on the supporting materials, the use of electrolytes that do not dissolve polysulfides via the coordination of Li+ and solvents, and the use of ion-exchange polymers to permeate Li+ selectively. The following approaches to enable practical applications of S cathodes in future Li-ion batteries are introduced: the utilization of Li-free anode materials, such as C and Si; the use of Li2S cathodes, which are prepared via a pre-lithiation process; and increasing the areal capacity of the S cathode by using a suitable current collector such as Al foam, thus providing a large amount of space for Li+ to migrate and the electron-conductive path. The utilization of an Al foam current collector is one of the promising approaches to creating a cost-effective Li-ion battery owing to the established mass production of Al foam for use in NiMH batteries; such Li-ion battery can achieve an unprecedentedly high areal capacity of 21.9 mAh cm−2. Owing to the resulting areal capacity, the possibility of developing a lithium-sulfur battery with an energy density greater than 200 Wh kg−1 has been demonstrated. Consequently, the combination of these approaches, as introduced in this review, would help create a bright, sustainable society.

ジャーナルJournal of Solid State Electrochemistry
出版ステータスPublished - 2017 7月 1

ASJC Scopus subject areas

  • 材料科学(全般)
  • 凝縮系物理学
  • 電気化学
  • 電子工学および電気工学


「Techniques for realizing practical application of sulfur cathodes in future Li-ion batteries」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。