Temperature dependence of force, velocity, and processivity of single kinesin molecules

Kenji Kawaguchi, Shin'Ichi Ishiwata*


    研究成果: Article査読

    104 被引用数 (Scopus)


    Using the bead assay in optical microscopy equipped with optical tweezers, we have examined the effect of temperature on the gliding velocity, force, and processivity of single kinesin molecules interacting with a microtubule between 15 and 35°C. The gliding velocity increased with the Arrhenius activation energy of 50 kJ/mol, consistent with the temperature dependence of the microtubule-dependent ATPase activity. Also, the average run length, i.e., a measure of processivity of kinesin, increased on increasing temperature. On the other hand, the generated force was independent of temperature, 7.34 ± 0.33 pN (average ± S.D., n = 70). The gliding velocities decreased almost linearly with an increase in force irrespective of temperature, implying that the efficiency of mechanochemical energy conversion is maintained constant in this temperature range. Thus, we suggest that the force generation is attributable to the temperature-insensitive nucleotide-binding state(s) and/or conformational change(s) of kinesin-microtubule complex, whereas the gliding velocity is determined by the ATPase rate. (C) 2000 Academic Press.

    ジャーナルBiochemical and Biophysical Research Communications
    出版ステータスPublished - 2000 6月 16

    ASJC Scopus subject areas

    • 生化学
    • 生物理学
    • 分子生物学


    「Temperature dependence of force, velocity, and processivity of single kinesin molecules」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。