Text classification and keyword extraction by learning decision trees

Yasubumi Sakakibara*, Kazuo Misue, Takeshi Koshiba

*この研究の対応する著者

研究成果: Conference contribution

14 被引用数 (Scopus)

抄録

In this paper, we propose a completely new approach to the problem of text classification and automatic keyword extraction by using machine learning techniques. We introduce a class of representations for classifying text data based on decision trees, and present an algorithm for learning it inductively. Our algorithm has the following features: it does not need any natural language processing technique, and it is robust for noisy data. We show that our learning algorithm can be used for automatic extraction of keywords for text retrieval and automatic text categorization. We also demonstrate some experimental results using our algorithm.

本文言語English
ホスト出版物のタイトルProceedings of the Conference on Artificial Intelligence Applications
出版社Publ by IEEE
ページ466
ページ数1
ISBN(印刷版)0818638400
出版ステータスPublished - 1993
外部発表はい
イベントProceedings of the 9th Conference on Artificial Intelligence for Applications - Orlando, FL, USA
継続期間: 1993 3月 11993 3月 5

出版物シリーズ

名前Proceedings of the Conference on Artificial Intelligence Applications

Other

OtherProceedings of the 9th Conference on Artificial Intelligence for Applications
CityOrlando, FL, USA
Period93/3/193/3/5

ASJC Scopus subject areas

  • ソフトウェア

フィンガープリント

「Text classification and keyword extraction by learning decision trees」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル