The α-EM algorithm: A block connectable generalized leaning tool for neural networks

Yasuo Matsuyama*

*この研究の対応する著者

    研究成果: Conference contribution

    7 被引用数 (Scopus)

    抄録

    The a-divergence is utilized to derive a generalized expectation and maximization algorithm (EM algorithm). This algorithm has a wide range of applications. In this paper, neural network learning for mixture probabilities is focused. The a-EM algorithm includes the existing EM algorithm as a special case since that corresponds to a = -1. The parameter a specifies a probability weight for the learning. This number affects learning speed and local optimality. In the discussions of update equations of neural nets, extensions of basic statistics such as Fisher's efficient score, his measure of information and Cramdr-Rao's inequality are also given. Besides, this paper unveils another new idea. It is found that the cyclic EM structure can be used as a building block to generate a learning systolic array. Attaching monitors to this systolic array makes it possible to create a functionally distributed learning system.

    本文言語English
    ホスト出版物のタイトルLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    出版社Springer Verlag
    ページ483-492
    ページ数10
    1240 LNCS
    ISBN(印刷版)3540630473, 9783540630470
    出版ステータスPublished - 1997
    イベント4th International Work-Conference on Artificial and Natural Neural Networks, IWANN 1997 - Lanzarote, Canary Islands
    継続期間: 1997 6月 41997 6月 6

    出版物シリーズ

    名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    1240 LNCS
    ISSN(印刷版)03029743
    ISSN(電子版)16113349

    Other

    Other4th International Work-Conference on Artificial and Natural Neural Networks, IWANN 1997
    CityLanzarote, Canary Islands
    Period97/6/497/6/6

    ASJC Scopus subject areas

    • コンピュータ サイエンス(全般)
    • 理論的コンピュータサイエンス

    フィンガープリント

    「The α-EM algorithm: A block connectable generalized leaning tool for neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル