抄録
In this paper a structure of a syslem is defined as a mathematical structure [formula omitted], where [formula omitted]is a first-order logic language and Σ is a set of sentences of the given first-order logic. It is shown that a canonical structure determined by I, which is similar to those used in proving the Gödel's completeness theorem, satisfies a universality in the sense of category theory when homomorphisms are used as morphisms, and a freeness in the sense of universal algebra when Σ-morphisms, which preserve Σ, are used. The universality and the freeness give the minimality of the canonical structure.As an example, a structure of a stationary system is defined as a pair [formula omitted] Its canonical structure is actually constructed. In a sense this canonical structure accords with models constructed by Nerode realization.
本文言語 | English |
---|---|
ページ(範囲) | 141-163 |
ページ数 | 23 |
ジャーナル | International Journal of General Systems |
巻 | 15 |
号 | 2 |
DOI | |
出版ステータス | Published - 1989 6月 |
外部発表 | はい |
ASJC Scopus subject areas
- 制御およびシステム工学
- 理論的コンピュータサイエンス
- 情報システム
- モデリングとシミュレーション
- コンピュータ サイエンスの応用