The Dantzig selector for a linear model of diffusion processes

Kou Fujimori*

*この研究の対応する著者

    研究成果: Article査読

    6 被引用数 (Scopus)

    抄録

    In this paper, a linear model of diffusion processes with unknown drift and diagonal diffusion matrices is discussed. We will consider the estimation problems for unknown parameters based on the discrete time observation in high-dimensional and sparse settings. To estimate drift matrices, the Dantzig selector which was proposed by Candés and Tao in 2007 will be applied. We will prove two types of consistency of the Dantzig selector for the drift matrix; one is the consistency in the sense of lq norm for every q∈ [1 , ∞] and another is the variable selection consistency. Moreover, we will construct an asymptotically normal estimator for the drift matrix by using the variable selection consistency of the Dantzig selector.

    本文言語English
    ジャーナルStatistical Inference for Stochastic Processes
    DOI
    出版ステータスAccepted/In press - 2018 1月 1

    ASJC Scopus subject areas

    • 統計学および確率

    フィンガープリント

    「The Dantzig selector for a linear model of diffusion processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル