The dual jacobian of a generalised hyperbolic tetrahedron, and volumes of prisms

Alexander Kolpakov, Jun Murakami

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We derive an analytic formula for the dual Jacobian matrix of a generalised hyperbolic tetrahedron. Two cases are considered: a mildly truncated and a prism truncated tetrahedron. The Jacobian for the latter arises as an analytic continuation of the former, that falls in line with a similar behaviour of the corresponding volume formulae. Also, we obtain a volume formula for a hyperbolic n-gonal prism: the proof requires the above mentioned Jacobian, employed in the analysis of the edge lengths behaviour of such a prism, needed later for the Schläfli formula.

本文言語English
ページ(範囲)45-67
ページ数23
ジャーナルTokyo Journal of Mathematics
39
1
DOI
出版ステータスPublished - 2016 6月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「The dual jacobian of a generalised hyperbolic tetrahedron, and volumes of prisms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル