The GREYC/LLACAN Machine Translation Systems for the IWSLT 2010 Campaign

Julien Gosme, Wigdan Mekki, Fathi Debili, Yves Lepage, Nadine Lucas

研究成果: Paper査読

1 被引用数 (Scopus)

抄録

In this paper we explore the contribution of the use of two Arabic morphological analyzers as preprocessing tools for statistical machine translation. Similar investigations have already been reported for morphologically rich languages like German, Turkish and Arabic. Here, we focus on the case of the Arabic language and mainly discuss the use of the G-LexAr analyzer. A preliminary experiment has been designed to choose the most promising translation system among the 3 G-LexAr-based systems, we concluded that the systems are equivalent. Nevertheless, we decided to use the lemmatized output of G-LexAr and use its translations as primary run for the BTEC AE track. The results showed that G-LexAr outputs degrades translation compared to the basic SMT system trained on the un-analyzed corpus.

本文言語English
ページ59-65
ページ数7
出版ステータスPublished - 2010
外部発表はい
イベント7th International Workshop on Spoken Language Translation, IWSLT 2010 - Paris, France
継続期間: 2010 12月 22010 12月 3

Conference

Conference7th International Workshop on Spoken Language Translation, IWSLT 2010
国/地域France
CityParis
Period10/12/210/12/3

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 言語学および言語

フィンガープリント

「The GREYC/LLACAN Machine Translation Systems for the IWSLT 2010 Campaign」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル