The Lempel-Ziv complexity of 1/f spectral chaos and the infinite ergodic theory

Soya Shinkai*, Yoji Aizawa

*この研究の対応する著者

研究成果: Article査読

抄録

A new large deviation property for the Lempel-Ziv complexity is numerically studied by using a one-dimesional non-hyperbolic "modified Bernoulli map", where the transition between stationary and non-stationary chaos is clearly observed. We will show that the Lempel-Ziv complexity and its fluctuations obey the universal scaling laws, and that the Lempel-Ziv complexity has the L1-function property of the infinite ergodic theory. One of the most striking results is that the 1/f spectral process reveals the maximum diversity at the transition point from the stationary chaos to the non-stationary one.

本文言語English
ページ(範囲)213-214
ページ数2
ジャーナルJournal of Physics: Conference Series
31
1
DOI
出版ステータスPublished - 2006 3月 22

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「The Lempel-Ziv complexity of 1/f spectral chaos and the infinite ergodic theory」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル