The nielsen realization problem for asymptotic teichm̈uller modular groups

Ege Fujikawa*, Katsuhiko Matsuzaki

*この研究の対応する著者

研究成果: Article査読

抄録

Under a certain geometric assumption on a hyperbolic Riemann surface, we prove an asymptotic version of the fixed point theorem for the Teichm̈uller modular group, which asserts that every finite subgroup of the asymptotic Teichm̈uller modular group has a common fixed point in the asymptotic Teichm̈uller space. For its proof, we use a topological characterization of the asymptotically trivial mapping class group, which has been obtained in the authors' previous paper, but a simpler argument is given here. As a consequence, every finite subgroup of the asymptotic Teichm̈uller modular group is realized as a group of quasiconformal automorphisms modulo coincidence near infinity. Furthermore, every finite subgroup of a certain geometric automorphism group of the asymptotic Teichm̈uller space is realized as an automorphism group of the Royden boundary of the Riemann surface. These results can be regarded as asymptotic versions of the Nielsen realization theorem.

本文言語English
ページ(範囲)3309-3327
ページ数19
ジャーナルTransactions of the American Mathematical Society
365
6
DOI
出版ステータスPublished - 2013

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「The nielsen realization problem for asymptotic teichm̈uller modular groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル