抄録
The Colonel Blotto game is a two-player constant-sum game in which each player simultaneously distributes his fixed level of resources across a set of contests. In the traditional formulation of the Colonel Blotto game, the players' resources are "use it or lose it" in the sense that any resources that are not allocated to one of the contests are forfeited. This article examines a non-constant-sum version of the Colonel Blotto game that relaxes this use it or lose it feature. We find that if the level of asymmetry between the players' budgets is below a threshold, then there exists a one-to-one mapping from the unique set of equilibrium univariate marginal distribution functions in the constant-sum game to those in the non-constant-sum game. Once the asymmetry of the players' budgets exceeds the threshold, this relationship breaks down and we construct a new equilibrium.
本文言語 | English |
---|---|
ページ(範囲) | 397-433 |
ページ数 | 37 |
ジャーナル | Economic Theory |
巻 | 51 |
号 | 2 |
DOI | |
出版ステータス | Published - 2012 10月 |
外部発表 | はい |
ASJC Scopus subject areas
- 経済学、計量経済学