The number of cusps of right-angled polyhedra in hyperbolic spaces

Jun Nonaka*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

As was pointed out by Nikulin [8] and Vinberg [10], a right-angled polyhedron of finite volume in the hyperbolic n-space Hn has at least one cusp for n ≥ 5. We obtain non-trivial lower bounds on the number of cusps of such polyhedra. For example, right-angled polyhedra of finite volume must have at least three cusps for n = 6. Our theorem also says that the higher the dimension of a right-angled polyhedron becomes, the more cusps it must have.

本文言語English
ページ(範囲)539-560
ページ数22
ジャーナルTokyo Journal of Mathematics
38
2
DOI
出版ステータスPublished - 2015 12月

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「The number of cusps of right-angled polyhedra in hyperbolic spaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル