The Numbers of Edges of 5-Polytopes with a Given Number of Vertices

Takuya Kusunoki, Satoshi Murai*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

A basic combinatorial invariant of a convex polytope P is its f-vector f(P) = (f, f 1 , ⋯ , f dim P - 1 ) , where f i is the number of i-dimensional faces of P. Steinitz characterized all possible f-vectors of 3-polytopes and Grünbaum characterized the pairs given by the first two entries of the f-vectors of 4-polytopes. In this paper, we characterize the pairs given by the first two entries of the f-vectors of 5-polytopes. The same result was also proved by Pineda-Villavicencio, Ugon and Yost independently.

本文言語English
ページ(範囲)89-101
ページ数13
ジャーナルAnnals of Combinatorics
23
1
DOI
出版ステータスPublished - 2019 3月 7

ASJC Scopus subject areas

  • 離散数学と組合せ数学

フィンガープリント

「The Numbers of Edges of 5-Polytopes with a Given Number of Vertices」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル