The ordered field property and a finite algorithm for the Nash bargaining solution

Mamoru Kaneko*

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This note proves that the two person Nash bargaining theory with polyhedral bargaining regions needs only an ordered field (which always includes the rational number field) as its scalar field. The existence of the Nash bargaining solution is the main part of this result and the axiomatic characterization can be proved in the standard way with slight modifications. We prove the existence by giving a finite algorithm to calculate the Nash solution for a polyhedral bargaining problem, whose speed is of order Bm(m-1) (m is the number of extreme points and B is determined by the extreme points).

本文言語English
ページ(範囲)227-236
ページ数10
ジャーナルInternational Journal of Game Theory
20
3
DOI
出版ステータスPublished - 1992 9月
外部発表はい

ASJC Scopus subject areas

  • 社会科学(その他)
  • 統計学および確率
  • 数学(その他)
  • 経済学、計量経済学

フィンガープリント

「The ordered field property and a finite algorithm for the Nash bargaining solution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル