抄録
We investigate the mean squared error of the Stein-James estimator for the mean when the observations are generated from a Gaussian vector stationary process with dimension greater than two. First, assuming that the process is short-memory, we evaluate the mean squared error, and compare it with that for the sample mean. Then a sufficient condition for the Stein-James estimator to improve upon the sample mean is given in terms of the spectral density matrix around the origin. We repeat the analysis for Gaussian vector long-memory processes. Numerical examples clearly illuminate the Stein-James phenomenon for dependent samples. The results have the potential to improve the usual trend estimator in time series regression models.
本文言語 | English |
---|---|
ページ(範囲) | 737-746 |
ページ数 | 10 |
ジャーナル | Biometrika |
巻 | 92 |
号 | 3 |
DOI | |
出版ステータス | Published - 2005 9月 |
ASJC Scopus subject areas
- 統計学および確率
- 数学 (全般)
- 農業および生物科学(その他)
- 農業および生物科学(全般)
- 統計学、確率および不確実性
- 応用数学