The Thermal Stability of the Collagen Triple Helix Is Tuned According to the Environmental Temperature

Kazunori K. Fujii, Yuki Taga, Yusuke K. Takagi, Ryo Masuda, Shunji Hattori, Takaki Koide*


研究成果: Article査読

4 被引用数 (Scopus)


Triple helix formation of procollagen occurs in the endoplasmic reticulum (ER) where the single-stranded α-chains of procollagen undergo extensive post-translational modifications. The modifications include prolyl 4-and 3-hydroxylations, lysyl hydroxylation, and following glycosyl-ations. The modifications, especially prolyl 4-hydroxylation, enhance the thermal stability of the procollagen triple helix. Procollagen molecules are transported to the Golgi and secreted from the cell, after the triple helix is formed in the ER. In this study, we investigated the relationship between the thermal stability of the collagen triple helix and environmental temperature. We analyzed the number of collagen post-translational modifications and thermal melting temperature and α-chain composition of secreted type I collagen in zebrafish embryonic fibroblasts (ZF4) cultured at various temperatures (18, 23, 28, and 33 °C). The results revealed that thermal stability and other properties of collagen were almost constant when ZF4 cells were cultured below 28 °C. By contrast, at a higher temperature (33 °C), an increase in the number of post-translational modifications and a change in α-chain composition of type I collagen were observed; hence, the collagen acquired higher thermal stability. The results indicate that the thermal stability of collagen could be autonomously tuned according to the environmental temperature in poikilotherms.

ジャーナルInternational journal of molecular sciences
出版ステータスPublished - 2022 2月 1

ASJC Scopus subject areas

  • 触媒
  • 分子生物学
  • 分光学
  • コンピュータ サイエンスの応用
  • 物理化学および理論化学
  • 有機化学
  • 無機化学


「The Thermal Stability of the Collagen Triple Helix Is Tuned According to the Environmental Temperature」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。