抄録
We present a systematic way to construct ultra-discrete versions of the Painlevé equations starting from know discrete forms. These ultra-discrete equations are generalised cellular automata in the sense that the dependent variable takes only integer values. The ultra-discrete Painlevé equations have the properties characteristic of the continuous and discrete Painlevé's, namely coalescence cascades, particular solutions and auto-Bäcklund relations.
本文言語 | English |
---|---|
ページ(範囲) | 185-196 |
ページ数 | 12 |
ジャーナル | Physica D: Nonlinear Phenomena |
巻 | 114 |
号 | 3-4 |
DOI | |
出版ステータス | Published - 1998 |
外部発表 | はい |
ASJC Scopus subject areas
- 統計物理学および非線形物理学
- 数理物理学
- 凝縮系物理学
- 応用数学