Thermally stimulated current in low-density polyethylene/MgO nanocomposite - On the mechanism of its superior dielectric properties

Kazuyuki Ishimoto*, Toshikatsu Tanaka, Yoshimichi Ohki, Yoitsu Sekiguchi, Yoshinao Murata

*この研究の対応する著者

研究成果: Article査読

11 被引用数 (Scopus)

抄録

Recently polymer nanocomposite has been attracting much attention as an emerging insulating material. In this paper, we measured thermally stimulated depolarization current (TSDC) in low-density polyethylene (LDPE)/MgO nanocomposite by changing measuring parameters such as the temperature increasing rate and the intensity of electric field applied. As a result, a TSDC peak that spreads over a wide temperature range from 0 °C to 60 °C was observed in all the samples. As the amount of MgO nano-filler increases, the TSDC peak height decreases. Furthermore, by adopting a partial heating method, the wide TSDC peak was resolved into several component peaks. Among them, the peak at around 12 °C was found not to appear in the base LDPE. By analyzing its initial rising portion, the 12-°C peak was assumed to have a fairly deep energy depth of about 2 eV. These results indicate that charge carriers tend to be captured more strongly by the addition of MgO nano-fillers. If these captured charge carriers induce homocharge layers in the vicinity of the electrodes further formation of space charge would be suppressed. This seems to explain the fact that the amount of space charge is smaller in the nanocomposite with a proper addition of MgO than in the base LDPE.

本文言語English
ページ(範囲)97-102+2
ジャーナルIEEJ Transactions on Fundamentals and Materials
129
2
DOI
出版ステータスPublished - 2009 12月 28

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Thermally stimulated current in low-density polyethylene/MgO nanocomposite - On the mechanism of its superior dielectric properties」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル