Thermoresponsive polymer-modified microfibers for cell separations

Kenichi Nagase*, Yoichi Sakurada, Satoru Onizuka, Takanori Iwata, Masayuki Yamato, Naoya Takeda, Teruo Okano

*この研究の対応する著者

研究成果: Article査読

36 被引用数 (Scopus)

抄録

Thermoresponsive polymer-modified microfibers were prepared through electrospinning of poly(4-vinylbenzyl chloride) (PVBC) and subsequent surface-initiated atom transfer radical polymerization for grafting poly(N-isopropylacrylamide) (PIPAAm). Electrospinning conditions were optimized to produce large-diameter (20 μm) PVBC microfibers. The amount of PIPAAm grafted on the microfibers was controlled via the IPAAm monomer concentration. The microfibers exhibited thermally controlled cell separation by selective adhesion of normal human dermal fibroblasts in a mixed cell suspension that also contained human umbilical vein endothelial cells. In addition, adipose-derived stem cells (ADSCs) exhibited thermally modulated cell adhesion and detachment, while adhesion of other ADSC-related cells was low. Thus, ADSCs could be separated from a mixture of adipose tissue-derived cells simply by changing the temperature. Overall, the PIPAAm-modified microfibers are potentially applicable as temperature-modulated cell separation materials. Statement of Significance Thermoresponsive poly(N-isopropylacrylamide) (PIPAAm) polymer-modified poly(4-vinylbenzyl chloride) (PVBC) microfibers were prepared via electrospinning of PVBC, followed by surface-initiated ATRP. They formed effective thermally-modulated cell separation materials with large surface areas. Cells adhered and extended along the modified microfibers; this was not observed on previously reported PIPAAm-modified flat substrates. The cellular adhesion enabled separation of fibroblast cells, as well as that of adipose-derived mesenchymal stem cells, from mixtures of similar cells. Thus, the temperature-controlled thermoresponsive microfibers would be potentially useful as cell separation materials.

本文言語English
ページ(範囲)81-92
ページ数12
ジャーナルActa Biomaterialia
53
DOI
出版ステータスPublished - 2017 4月 15

ASJC Scopus subject areas

  • バイオテクノロジー
  • 生体材料
  • 生化学
  • 生体医工学
  • 分子生物学

フィンガープリント

「Thermoresponsive polymer-modified microfibers for cell separations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル