Three-dimensional immobilization of bacterial cells with a fibrous network and its application in a high-rate fixed-bed nitrifying bioreactor

Hiroshi Hayashi, Motomi Ono, Satoshi Tsuneda*, Akira Hirata

*この研究の対応する著者

研究成果: Article査読

11 被引用数 (Scopus)

抄録

A novel technique of immobilizing nitrifying bacteria using fibrous material, the three-dimensional immobilization with a fibrous network (3-D IFN), is proposed and its use in a high-rate nitrifying bioreactor is investigated. The fibrous carrier employed is ferro-nickel fibrous slag (FS), which is industrial solid waste from a ferro-nickel electrosmelting process. Since cell immobilization with FS is readily carried out within 90 seconds, this method is by far more rapid than any other cell immobilization techniques. A fixed-bed nitrifying reactor packed with cell-immobilizing FS is examined by both batch-mode and continuous feeding tests. By controlling the circulation flow rate, the transport of dissolved oxygen to the immobilized cells is improved, which is a distinct characteristic of this reactor. The continuous feeding test revealed that the ammonia removal rate of the reactor reached 6.5 kg-N/(m3-reactor)/d, which was extremely high compared with that of the conventional fixed-bed reactor for wastewater treatment. It is demonstrated that the 3-D IFN is a simple yet effective cell immobilization technique that can be successfully used in a high-rate nitrifying reactor.

本文言語English
ページ(範囲)68-75
ページ数8
ジャーナルJOURNAL OF CHEMICAL ENGINEERING OF JAPAN
35
1
DOI
出版ステータスPublished - 2002 1月

ASJC Scopus subject areas

  • 化学 (全般)
  • 化学工学(全般)

フィンガープリント

「Three-dimensional immobilization of bacterial cells with a fibrous network and its application in a high-rate fixed-bed nitrifying bioreactor」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル