Topology-Based Exact Synthesis for Majority Inverter Graph

Xianliang Ge, Shinji Kimura

研究成果: Conference contribution

抄録

SAT-based exact synthesis has important applications in logic optimization problems, and its scalability and computational speed greatly affect the optimization results. In the paper, a new topological constraint using the list of levels of inputs of each gate is introduced and accelerates the exact synthesis. Such topological constraints can reduce the search space by structure enumeration. By our new partition of the synthesis problem, we can maintain a good balance between runtime on a single satisfiability problem and the number of satisfiability problems. When compared to the fence-based method and the partial DAG based method, our methodology demonstrates a considerable reduction in runtime of 24.5% and 5.7%, respectively. Furthermore, our implementation can extend the scalability of SAT-based exact synthesis.

本文言語English
ホスト出版物のタイトルIEEE International Symposium on Circuits and Systems, ISCAS 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3255-3259
ページ数5
ISBN(電子版)9781665484855
DOI
出版ステータスPublished - 2022
イベント2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, United States
継続期間: 2022 5月 272022 6月 1

出版物シリーズ

名前Proceedings - IEEE International Symposium on Circuits and Systems
2022-May
ISSN(印刷版)0271-4310

Conference

Conference2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
国/地域United States
CityAustin
Period22/5/2722/6/1

ASJC Scopus subject areas

  • 電子工学および電気工学

フィンガープリント

「Topology-Based Exact Synthesis for Majority Inverter Graph」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル