TY - JOUR
T1 - Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system
AU - Takezawa, Akihiro
AU - Nii, Satoru
AU - Kitamura, Mitsuru
AU - Kogiso, Nozomu
PY - 2011/6/15
Y1 - 2011/6/15
N2 - This paper proposes a topology optimization for a linear elasticity design problem subjected to an uncertain load. The design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of an uncertain load set. Since the robust compliance can be formulated as the scalar product of the uncertain input load and output displacement vectors, the idea of "aggregation" used in the field of control is introduced to assess the value of the robust compliance. The aggregation solution technique provides the direct relationship between the uncertain input load and output displacement, as a small linear system composed of these vectors and the reduced size of a symmetric matrix, in the context of a discretized linear elasticity problem, using the finite element method. Introducing the constraint that the Euclidean norm of the uncertain load set is fixed, the robust compliance minimization problem is formulated as the minimization of the maximum eigenvalue of the aggregated symmetric matrix according to the Rayleigh-Ritz theorem for symmetric matrices. Moreover, the worst load case is easily established as the eigenvector corresponding to the maximum eigenvalue of the matrix. The proposed structural optimization method is implemented using topology optimization and the method of moving asymptotes (MMA). The numerical examples provided illustrate mechanically reasonable structures and establish the worst load cases corresponding to these optimal structures.
AB - This paper proposes a topology optimization for a linear elasticity design problem subjected to an uncertain load. The design problem is formulated to minimize a robust compliance that is defined as the maximum compliance induced by the worst load case of an uncertain load set. Since the robust compliance can be formulated as the scalar product of the uncertain input load and output displacement vectors, the idea of "aggregation" used in the field of control is introduced to assess the value of the robust compliance. The aggregation solution technique provides the direct relationship between the uncertain input load and output displacement, as a small linear system composed of these vectors and the reduced size of a symmetric matrix, in the context of a discretized linear elasticity problem, using the finite element method. Introducing the constraint that the Euclidean norm of the uncertain load set is fixed, the robust compliance minimization problem is formulated as the minimization of the maximum eigenvalue of the aggregated symmetric matrix according to the Rayleigh-Ritz theorem for symmetric matrices. Moreover, the worst load case is easily established as the eigenvector corresponding to the maximum eigenvalue of the matrix. The proposed structural optimization method is implemented using topology optimization and the method of moving asymptotes (MMA). The numerical examples provided illustrate mechanically reasonable structures and establish the worst load cases corresponding to these optimal structures.
KW - Eigenvalue analysis
KW - Finite element method
KW - Robust design
KW - Sensitivity analysis
KW - Topology optimization
KW - Worst case design
UR - http://www.scopus.com/inward/record.url?scp=79955395461&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79955395461&partnerID=8YFLogxK
U2 - 10.1016/j.cma.2011.03.008
DO - 10.1016/j.cma.2011.03.008
M3 - Article
AN - SCOPUS:79955395461
SN - 0374-2830
VL - 200
SP - 2268
EP - 2281
JO - Computer Methods in Applied Mechanics and Engineering
JF - Computer Methods in Applied Mechanics and Engineering
IS - 25-28
ER -