TY - GEN
T1 - Toward polyphonic musical instrument identification using example-based sparse representation
AU - Okamura, Mari
AU - Takehara, Masanori
AU - Tamura, Satoshi
AU - Hayamizu, Satoru
PY - 2012
Y1 - 2012
N2 - Musical instrument identification is one of the major topics in music signal processing. In this paper, we propose a musical instrument identification method based on sparse representation for polyphonic sounds. Such the identification has been still categorized into challenging tasks, since it needs high-performance signal processing techniques. The proposed scheme can be applied without any signal processing such as source separation. Sample feature vectors for various musical instruments are used for the base matrix of sparse representation. We conducted two experiments to evaluate the proposed method. First, the musical instrument identification is tested for monophonic sounds using five musical instruments. The average accuracy of 91.9% was obtained and it shows the effectiveness of the proposed method. Second, musical instrument composition of polyphonic sounds is examined, which contain two instruments. It is found that the estimated weight vector by sparse representation indicates the mixture ratio of two instruments.
AB - Musical instrument identification is one of the major topics in music signal processing. In this paper, we propose a musical instrument identification method based on sparse representation for polyphonic sounds. Such the identification has been still categorized into challenging tasks, since it needs high-performance signal processing techniques. The proposed scheme can be applied without any signal processing such as source separation. Sample feature vectors for various musical instruments are used for the base matrix of sparse representation. We conducted two experiments to evaluate the proposed method. First, the musical instrument identification is tested for monophonic sounds using five musical instruments. The average accuracy of 91.9% was obtained and it shows the effectiveness of the proposed method. Second, musical instrument composition of polyphonic sounds is examined, which contain two instruments. It is found that the estimated weight vector by sparse representation indicates the mixture ratio of two instruments.
UR - http://www.scopus.com/inward/record.url?scp=84874434535&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84874434535&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84874434535
SN - 9780615700502
T3 - 2012 Conference Handbook - Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012
BT - 2012 Conference Handbook - Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012
T2 - 2012 4th Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 2012
Y2 - 3 December 2012 through 6 December 2012
ER -