@article{19522d0f782e4adb8eba2321d2badc25,
title = "Track analysis, simulation, and field survey of the 2013 Typhoon Haiyan storm surge",
abstract = "The authors have examined the characteristics of Typhoon Haiyan (Yolanda), which made landfall on the coast of the Philippines on November 2013, generating a substantial storm surge. In order to better understand the storm surge phenomenon, its nature and severity were analysed by means of a numerical simulation and a field survey. Unlike most other tropical cyclones that weaken before they hit land, Haiyan struck Leyte Island at near peak strength, with maximum sustained wind speeds of 160 knots, the strongest in the recorded history of the Western North Pacific. Haiyan approached very quickly with a forward speed of 41 km/h towards Leyte, which was also the fastest among typhoons with similar intensities. As a result of these extreme gusts and the exceptionally low central pressure of the typhoon (895 hPa), Haiyan caused the largest storm surge in the recorded history of the Philippines. Numerical simulations show that the maximum storm surges occurred in Leyte Island and Samar Island. A storm surge field survey conducted by the authors corroborated this, with maximum inundation height of 7 m recorded in Tacloban, located at the northern end of Leyte Gulf. The simulation results also corroborate the fact that water levels at some locations first lowered and then rapidly began to increase after an hour.",
keywords = "Field survey, Philippines, Typhoon Haiyan (Yolanda), numerical simulation, storm surge, typhoon track analysis",
author = "H. Takagi and M. Esteban and T. Shibayama and T. Mikami and R. Matsumaru and {De Leon}, M. and Thao, {N. D.} and Takahiro Oyama and R. Nakamura",
note = "Funding Information: The authors would like to acknowledge the contribution of the other team members and the NHK team that accompanied the survey group: K. Kumagai, V. Paolo, L. G. Jakee, E. Shimakawa, N. Mizugai, H. Kitajima, T. Okado. Also, several Department of Public Works and Highways (DPWH), Office of Civil Defence (OCD), Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA), and other Philippines disaster management officials provided invaluable information to the authors. Finally, funds for the present research were provided by J-RAPID Program of Japan Science and Technology Agency (grant to Tokyo Institute of Technology), Strategic Research Foundation Grant-aided Project for Private Universities from Ministry of Education (Waseda University), and the Global Programme on Sustainability Science Global Leadership Initiative (GPSS-GLI, The University of Tokyo). Publisher Copyright: {\textcopyright} 2014 The Chartered Institution of Water and Environmental Management (CIWEM) and John Wiley & Sons Ltd",
year = "2017",
month = mar,
day = "1",
doi = "10.1111/jfr3.12136",
language = "English",
volume = "10",
pages = "42--52",
journal = "Journal of Flood Risk Management",
issn = "1753-318X",
publisher = "Blackwell Publishing",
number = "1",
}