Transfer Learning Method in Reinforcement Learning-based Traffic Signal Control

Zhenyu Mao, Jialong Li, Nianzhao Zheng, Kenji Tei, Shinichi Honiden

研究成果: Conference contribution

抄録

Traffic signal control is becoming more important in intelligent transport systems. Existing studies managed to increase the traffic efficiency on the assumption of a stable traffic environment where no emergencies occur. However, accidents and road closures happen from time to time, and the existing studies cannot guarantee efficiency when such temporary changes happen in the road conditions. Thus, we designed a transfer learning method for existing reinforcement learning-based traffic signal control systems. Our proposed method uses parameters from the previous training model to initialize the new model to increase its initial performance, thus speeding up the learning process and reducing the time needed to adapt to road condition changes.

本文言語English
ホスト出版物のタイトル2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ページ304-307
ページ数4
ISBN(電子版)9781665436762
DOI
出版ステータスPublished - 2021
イベント10th IEEE Global Conference on Consumer Electronics, GCCE 2021 - Kyoto, Japan
継続期間: 2021 10月 122021 10月 15

出版物シリーズ

名前2021 IEEE 10th Global Conference on Consumer Electronics, GCCE 2021

Conference

Conference10th IEEE Global Conference on Consumer Electronics, GCCE 2021
国/地域Japan
CityKyoto
Period21/10/1221/10/15

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • 信号処理
  • 生体医工学
  • 電子工学および電気工学
  • メディア記述
  • 器械工学

フィンガープリント

「Transfer Learning Method in Reinforcement Learning-based Traffic Signal Control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル