Transferable Unique Copyright Across AI Model Trading: A Blockchain-Driven Non-Fungible Token Approach

Yixin Fan, Guozhi Hao, Jun Wu*

*この研究の対応する著者

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

Currently, Machine Learning as a Service (MLaaS) greatly benefits artificial intelligence (AI) model trading. However, threats such as model piracy and patent grabbing devastatingly violate the copyright of AI models. Current invasive copyright protection solutions mainly rely on watermarking to embed specific information into AI models, which inevitably decreases the accuracy. While non-invasive schemes, such as adversarial samples, cannot guarantee uniqueness as the adversarial sample generation algorithm would be known to all traders, and thus need to be changed after trading. To enable the ownership information transferable across AI model trading, we propose a blockchain-driven Non-Fungible Token (NFT) approach for trading-oriented AI model copyright protection. We design a mapping mechanism from AI models parameters to NFTs which can identify uniqueness and ownership of AI models across trading. Besides, a reputation-based rewards and penalties scheme is proposed to prevent NFT piracy. Lastly, the evaluation verifies the applicability of our approach.

本文言語English
ホスト出版物のタイトルProceedings - 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security Companion, QRS-C 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ102-105
ページ数4
ISBN(電子版)9798350319910
DOI
出版ステータスPublished - 2022
イベント22nd IEEE International Conference on Software Quality, Reliability and Security Companion, QRS-C 2022 - Virtual, Online, China
継続期間: 2022 12月 52022 12月 9

出版物シリーズ

名前Proceedings - 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security Companion, QRS-C 2022

Conference

Conference22nd IEEE International Conference on Software Quality, Reliability and Security Companion, QRS-C 2022
国/地域China
CityVirtual, Online
Period22/12/522/12/9

ASJC Scopus subject areas

  • ソフトウェア
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理
  • モデリングとシミュレーション

フィンガープリント

「Transferable Unique Copyright Across AI Model Trading: A Blockchain-Driven Non-Fungible Token Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル