抄録
Electric power systems are becoming more complex making them more difficult to control. Owing to recent developments in information and communication technologies, power system data have become available online. In this paper, we propose a method that can predict transient stability multi-swing step-out using 'anomaly detection with data mining'. In particular, we focus our attention on the theory of ChangeFinder, which uses the SDAR algorithm and the two-stage learning model. The generator phase angles are obtained from transient stability simulations. They are passed as inputs to the ChangeFinder and the multi swing step-out can be detected. The validity of the proposed method is verified through simulations on the IEEJ 10 machine 47 bus-system.
本文言語 | English |
---|---|
ホスト出版物のタイトル | Proceedings of the 2016 IEEE Region 10 Conference, TENCON 2016 |
出版社 | Institute of Electrical and Electronics Engineers Inc. |
ページ | 3123-3126 |
ページ数 | 4 |
ISBN(電子版) | 9781509025961 |
DOI | |
出版ステータス | Published - 2017 2月 8 |
イベント | 2016 IEEE Region 10 Conference, TENCON 2016 - Singapore, Singapore 継続期間: 2016 11月 22 → 2016 11月 25 |
Other
Other | 2016 IEEE Region 10 Conference, TENCON 2016 |
---|---|
国/地域 | Singapore |
City | Singapore |
Period | 16/11/22 → 16/11/25 |
ASJC Scopus subject areas
- コンピュータ サイエンスの応用
- 電子工学および電気工学