Translation of unseen bigrams by analogy using an SVM classifier

Hao Wang, Lu Lyu, Yves Lepage

研究成果: Paper査読

抄録

Detecting language divergences and predicting possible sub-translations is one of the most essential issues in machine translation. Since the existence of translation divergences, it is impractical to straightforward translate from source sentence into target sentence while keeping the high degree of accuracy and without additional information. In this paper, we investigate the problem from an emerging and special point of view: bigrams and the corresponding translations. We first profile corpora and explore the constituents of bigrams in the source language. Then we translate unseen bigrams based on proportional analogy and filter the outputs using an Support Vector Machine (SVM) classifier. The experiment results also show that even a small set of features from analogous can provide meaningful information in translating by analogy.

本文言語English
ページ16-25
ページ数10
出版ステータスPublished - 2015
イベント29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015 - Shanghai, China
継続期間: 2015 10月 302015 11月 1

Other

Other29th Pacific Asia Conference on Language, Information and Computation, PACLIC 2015
国/地域China
CityShanghai
Period15/10/3015/11/1

ASJC Scopus subject areas

  • 人工知能
  • 人間とコンピュータの相互作用
  • 言語学および言語

フィンガープリント

「Translation of unseen bigrams by analogy using an SVM classifier」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル