TY - GEN
T1 - Traveling-wave thermoacoustic engine with pressurized air working gas
AU - Setiawan, Ikhsan
AU - Utomo, Agung Bambang Setio
AU - Murti, Prastowo
AU - Achmadin, Wahyu Nur
AU - Nohtomi, Makoto
N1 - Funding Information:
This research is financially supported by the Ministry of Research, Technology and Republic of Indonesia through the University Excellence Research Scheme.
Funding Information:
This research is financially supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia through the University Excellence Research Scheme.
Publisher Copyright:
© 2019 American Institute of Physics Inc. All rights reserved.
PY - 2019/3/29
Y1 - 2019/3/29
N2 - Thermoacoustic engines are energy conversion devices that convert thermal energy into mechanical work in the form of sound wave (gas oscillation). The sound wave is generated by thermal interaction between working gas and porous medium (regenerator) that possesses a large axial temperature gradient. Waste heat or solar thermal energy can be used as the heat source and noble gases or other inert gases such as air can be employed as the working gas, so that the thermoacoustic engines act as environmentally benign machines. The sound energy output can then be harnessed to drive a linear alternator to generate electricity. This paper presents experimental characterization of a traveling-wave looped-tube thermoacoustic engine with air working gas at various pressures including the onset temperature difference (the temperature difference between the regenerator ends required to start producing the sound), the harmonic frequencies and the pressure amplitudes of the generated sound waves. In this experiment, an electric heater is used as the heat source which supplies heat into the regenerator hot end. The experiment is carried out by measuring the temperatures at regenerator ends and sound pressure amplitudes at several points along the looped-tube. The measurements are performed at different charged pressures of air inside the looped-tube in the range of 100 kPa - 400 kPa. It is found that the smallest onset temperature difference is 417 C which is obtained at charged pressure of 200 kPa. In addition, the second harmonic sound wave is dominantly generated at air pressure of 100 kPa, while the first harmonic (fundamental mode) sound wave dominates at 200 kPa, and the third harmonic shows up at other higher pressures. Moreover, the pressure amplitudes of the three harmonics are linearly getting higher along with the increasing charged pressure. The highest pressure amplitude of the first harmonic is 7 kPa, whereas those of the second and third harmonics are 4.8 kPa and 1.1 kPa, respectively, which are achieved at 400 kPa charged pressured. Furthermore, the sound frequencies are not significantly affected by the charged pressure variation, those are around 96 Hz, 192 Hz, and 289 Hz for the first, second, and third harmonics, respectively.
AB - Thermoacoustic engines are energy conversion devices that convert thermal energy into mechanical work in the form of sound wave (gas oscillation). The sound wave is generated by thermal interaction between working gas and porous medium (regenerator) that possesses a large axial temperature gradient. Waste heat or solar thermal energy can be used as the heat source and noble gases or other inert gases such as air can be employed as the working gas, so that the thermoacoustic engines act as environmentally benign machines. The sound energy output can then be harnessed to drive a linear alternator to generate electricity. This paper presents experimental characterization of a traveling-wave looped-tube thermoacoustic engine with air working gas at various pressures including the onset temperature difference (the temperature difference between the regenerator ends required to start producing the sound), the harmonic frequencies and the pressure amplitudes of the generated sound waves. In this experiment, an electric heater is used as the heat source which supplies heat into the regenerator hot end. The experiment is carried out by measuring the temperatures at regenerator ends and sound pressure amplitudes at several points along the looped-tube. The measurements are performed at different charged pressures of air inside the looped-tube in the range of 100 kPa - 400 kPa. It is found that the smallest onset temperature difference is 417 C which is obtained at charged pressure of 200 kPa. In addition, the second harmonic sound wave is dominantly generated at air pressure of 100 kPa, while the first harmonic (fundamental mode) sound wave dominates at 200 kPa, and the third harmonic shows up at other higher pressures. Moreover, the pressure amplitudes of the three harmonics are linearly getting higher along with the increasing charged pressure. The highest pressure amplitude of the first harmonic is 7 kPa, whereas those of the second and third harmonics are 4.8 kPa and 1.1 kPa, respectively, which are achieved at 400 kPa charged pressured. Furthermore, the sound frequencies are not significantly affected by the charged pressure variation, those are around 96 Hz, 192 Hz, and 289 Hz for the first, second, and third harmonics, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85064395388&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064395388&partnerID=8YFLogxK
U2 - 10.1063/1.5095327
DO - 10.1063/1.5095327
M3 - Conference contribution
AN - SCOPUS:85064395388
T3 - AIP Conference Proceedings
BT - Advanced Industrial Technology in Engineering Physics
A2 - Hatta, Agus Muhamad
A2 - Indriawati, Katherin
A2 - Nugroho, Gunawan
A2 - Biyanto, Totok Ruki
A2 - Arifianto, Dhany
A2 - Risanti, Doty Dewi
A2 - Irawan, Sonny
PB - American Institute of Physics Inc.
T2 - 2nd Engineering Physics International Conference 2018, EPIC 2018
Y2 - 31 October 2018 through 2 November 2018
ER -