TY - JOUR
T1 - Tuning proton coupled electron transfer from tyrosine
T2 - A competition between concerted and step-wise mechanisms
AU - Sjödin, Martin
AU - Ghanem, Raed
AU - Polivka, Tomas
AU - Pan, Jie
AU - Styring, Stenbjörn
AU - Sun, Licheng
AU - Sundström, Villy
AU - Hammarström, Leif
PY - 2004/10/21
Y1 - 2004/10/21
N2 - The intra-molecular, proton-coupled electron transfer from a tyrosine residue to covalently linked tris-bipyridine ruthenium(III) complexes in aqueous solution (RuIII-TyrOH → RuII-TyrO. + H+) is studied in two complexes. The RuIII-TyrOH state is generated by laser flash-induced photo-oxidation in the presence of the electron acceptor methyl viologen. The reaction is shown to follow either a concerted electron transfer-deprotonation (CEP) mechanism or a step-wise mechanism with electron transfer followed by deprotonation (ETPT). The CEP is characterised by a pH-dependent rate constant, a large reorganisation energy (λ = 1.4 eV at pH = 7) and a significant kinetic isotope effect: kH/kD = 1.5-3. We can explain the pH-dependence and the high λ by the pH-dependent ΔG°′ for proton release to bulk water, and by the additional reorganisation energy associated with the proton transfer coordinate (both internal and solvent), respectively. In the calculation of λ from the temperature dependent rate constant, correction is made for the large entropy increase of the reaction (TΔSrxn ≈ 0.41 eV at pH = 7 and T = 298 K). The step-wise ETPT mechanism on the other hand shows a pH-independent rate, a lower reorganisation energy and no kinetic isotope effect. We propose that our complexes can be used as models to understand proton-coupled electron transfer in radical proteins. We show that the mechanism can be switched between CEP and ETPT by tuning the reaction pH and the electrochemical potential of the RuIII/II oxidant. With a low driving force for the overall reaction the "energy conservative" CEP mechanism may dominate, in spite of the higher reorganisation energy as compared to ETPT.
AB - The intra-molecular, proton-coupled electron transfer from a tyrosine residue to covalently linked tris-bipyridine ruthenium(III) complexes in aqueous solution (RuIII-TyrOH → RuII-TyrO. + H+) is studied in two complexes. The RuIII-TyrOH state is generated by laser flash-induced photo-oxidation in the presence of the electron acceptor methyl viologen. The reaction is shown to follow either a concerted electron transfer-deprotonation (CEP) mechanism or a step-wise mechanism with electron transfer followed by deprotonation (ETPT). The CEP is characterised by a pH-dependent rate constant, a large reorganisation energy (λ = 1.4 eV at pH = 7) and a significant kinetic isotope effect: kH/kD = 1.5-3. We can explain the pH-dependence and the high λ by the pH-dependent ΔG°′ for proton release to bulk water, and by the additional reorganisation energy associated with the proton transfer coordinate (both internal and solvent), respectively. In the calculation of λ from the temperature dependent rate constant, correction is made for the large entropy increase of the reaction (TΔSrxn ≈ 0.41 eV at pH = 7 and T = 298 K). The step-wise ETPT mechanism on the other hand shows a pH-independent rate, a lower reorganisation energy and no kinetic isotope effect. We propose that our complexes can be used as models to understand proton-coupled electron transfer in radical proteins. We show that the mechanism can be switched between CEP and ETPT by tuning the reaction pH and the electrochemical potential of the RuIII/II oxidant. With a low driving force for the overall reaction the "energy conservative" CEP mechanism may dominate, in spite of the higher reorganisation energy as compared to ETPT.
UR - http://www.scopus.com/inward/record.url?scp=8144223109&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=8144223109&partnerID=8YFLogxK
U2 - 10.1039/b407383e
DO - 10.1039/b407383e
M3 - Article
AN - SCOPUS:8144223109
SN - 1463-9076
VL - 6
SP - 4851
EP - 4858
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 20
ER -