Twisted Alexander polynomials, character varieties and Reidemeister torsions of double branched covers

Yoshikazu Yamaguchi*

*この研究の対応する著者

研究成果: Article査読

抄録

We give an extension of Fox's formula of the Alexander polynomial for a double branched cover over the three-sphere. Our formula provides the Reidemeister torsion of the double branched cover along a knot for a non-trivial 1-dimensional representation. In our formula, the Reidemeister torsion is given by the product of two factors derived from the knot group. One of the factors is determined by the twisted Alexander polynomial and the other is determined by a rational function on the character variety of the knot group. As an application, we show that these products distinguish the isotopy classes of two-bridge knots up to their mirror images.

本文言語English
ページ(範囲)278-305
ページ数28
ジャーナルTopology and its Applications
204
DOI
出版ステータスPublished - 2016 5月 15
外部発表はい

ASJC Scopus subject areas

  • 幾何学とトポロジー

フィンガープリント

「Twisted Alexander polynomials, character varieties and Reidemeister torsions of double branched covers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル