Unification of hypergraph λ-terms

Alimujiang Yasen, Kazunori Ueda*

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We developed a technique for modeling formal systems involving name binding in a modeling language based on hypergraph rewriting. A hypergraph consists of graph nodes, edges with two endpoints and edges with multiple endpoints. The idea is that hypergraphs allow us to represent terms containing bindings and that our notion of a graph type keeps bound variables distinct throughout rewriting steps. We previously encoded the untyped λ-calculus and the evaluation and type checking of System F<:, but the encoding of System F<: type inference requires a unification algorithm. We studied and successfully implemented a unification algorithm modulo α-equivalence for hypergraphs representing untyped λ-terms. The unification algorithm turned out to be similar to nominal unification despite the fact that our approach and nominal approach to name binding are very different. However, some basic properties of our framework are easier to establish compared to the ones in nominal unification. We believe this indicates that hypergraphs provide a nice framework for encoding formal systems involving binders and unification modulo α-equivalence.

本文言語English
ホスト出版物のタイトルTopics in Theoretical Computer Science - 2nd IFIP WG 1.8 International Conference, TTCS 2017, Proceedings
編集者Mohammad Reza Mousavi, Jirí Sgall
出版社Springer Verlag
ページ106-124
ページ数19
ISBN(印刷版)9783319689524
DOI
出版ステータスPublished - 2017
イベント2nd IFIP WG 1.8 International Conference on Topics in Theoretical Computer Science, TTCS 2017 - Tehran, Iran, Islamic Republic of
継続期間: 2017 9月 122017 9月 14

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10608 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other2nd IFIP WG 1.8 International Conference on Topics in Theoretical Computer Science, TTCS 2017
国/地域Iran, Islamic Republic of
CityTehran
Period17/9/1217/9/14

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Unification of hypergraph λ-terms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル