Uniform estimates in the velocity at infinity for stationary solutions to the Navier-Stokes exterior problem

Yoshihiro Shibata, Masao Yamazaki

研究成果: Article査読

15 被引用数 (Scopus)

抄録

This paper is concerned with the stationary Navier-Stokes equations in exterior domains of dimension n ≥ 3, and provides a sufficient condition on the external force for the unique solvability. This condition is valid both in the case with small but nonzero velocity at infinity, and in the case with zero velocity at infinity. As a result it is proved that, if the external force satisfies this condition, the solution with nonzero velocity at infinity converges to the solution with zero velocity at infinity with respect to the weak-∗ topology of appropriate function spaces.

本文言語English
ページ(範囲)225-279
ページ数55
ジャーナルJapanese Journal of Mathematics
31
2
DOI
出版ステータスPublished - 2005

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Uniform estimates in the velocity at infinity for stationary solutions to the Navier-Stokes exterior problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル