Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem

Olivier Alvarez, Shigeaki Koike, Isao Nakayama

研究成果: Article査読

9 被引用数 (Scopus)

抄録

We obtain the uniqueness of lower semicontinuous (LSC) viscosity solutions of the transformed minimum time problem assuming that they converge to zero on a `reachable' part of the target in appropriate direction. We present a counter-example which shows that the uniqueness does not hold without this convergence assumption. It was shown by Soravia that the uniqueness of LSC viscosity solutions having a `subsolution property' on the target holds. In order to verify this subsolution property, we show that the dynamic programming principle (DPP) holds inside for any LSC viscosity solutions. In order to obtain the DPP, we prepare appropriate approximate PDEs derived through Barles' inf-convolution and its variant.

本文言語English
ページ(範囲)470-481
ページ数12
ジャーナルSIAM Journal on Control and Optimization
38
2
DOI
出版ステータスPublished - 2000
外部発表はい

ASJC Scopus subject areas

  • 制御と最適化
  • 応用数学

フィンガープリント

「Uniqueness of lower semicontinuous viscosity solutions for the minimum time problem」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル