Unitary monodromy implies the smoothness along the real axis for some Painlevé VI equation, I

Zhijie Chen*, Ting Jung Kuo, Chang Shou Lin

*この研究の対応する著者

研究成果: Article査読

3 被引用数 (Scopus)

抄録

In this paper, we study the Painlevé VI equation with parameter (98,−18, 18, 38). We prove (i) An explicit formula to count the number of poles of an algebraic solution with the monodromy group of the associated linear ODE being DN, where DN is the dihedral group of order 2N. (ii) There are only four solutions without poles in C∖{0,1}. (iii) If the monodromy group of the associated linear ODE of a solution λ(t) is unitary, then λ(t) has no poles in R∖{0,1}.

本文言語English
ページ(範囲)52-63
ページ数12
ジャーナルJournal of Geometry and Physics
116
DOI
出版ステータスPublished - 2017 6月 1
外部発表はい

ASJC Scopus subject areas

  • 数理物理学
  • 物理学および天文学(全般)
  • 幾何学とトポロジー

フィンガープリント

「Unitary monodromy implies the smoothness along the real axis for some Painlevé VI equation, I」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル