抄録
Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
本文言語 | English |
---|---|
ページ(範囲) | 1107-1117 |
ページ数 | 11 |
ジャーナル | Journal of Low Temperature Physics |
巻 | 199 |
号 | 3-4 |
DOI | |
出版ステータス | Published - 2020 5月 1 |
ASJC Scopus subject areas
- 原子分子物理学および光学
- 材料科学(全般)
- 凝縮系物理学
フィンガープリント
「Updated Design of the CMB Polarization Experiment Satellite LiteBIRD」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。引用スタイル
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Journal of Low Temperature Physics, Vol. 199, No. 3-4, 01.05.2020, p. 1107-1117.
研究成果: Article › 査読
}
TY - JOUR
T1 - Updated Design of the CMB Polarization Experiment Satellite LiteBIRD
AU - Sugai, H.
AU - Ade, P. A.R.
AU - Akiba, Y.
AU - Alonso, D.
AU - Arnold, K.
AU - Aumont, J.
AU - Austermann, J.
AU - Baccigalupi, C.
AU - Banday, A. J.
AU - Banerji, R.
AU - Barreiro, R. B.
AU - Basak, S.
AU - Beall, J.
AU - Beckman, S.
AU - Bersanelli, M.
AU - Borrill, J.
AU - Boulanger, F.
AU - Brown, M. L.
AU - Bucher, M.
AU - Buzzelli, A.
AU - Calabrese, E.
AU - Casas, F. J.
AU - Challinor, A.
AU - Chan, V.
AU - Chinone, Y.
AU - Cliche, J. F.
AU - Columbro, F.
AU - Cukierman, A.
AU - Curtis, D.
AU - Danto, P.
AU - de Bernardis, P.
AU - de Haan, T.
AU - De Petris, M.
AU - Dickinson, C.
AU - Dobbs, M.
AU - Dotani, T.
AU - Duband, L.
AU - Ducout, A.
AU - Duff, S.
AU - Duivenvoorden, A.
AU - Duval, J. M.
AU - Ebisawa, K.
AU - Elleflot, T.
AU - Enokida, H.
AU - Eriksen, H. K.
AU - Errard, J.
AU - Essinger-Hileman, T.
AU - Finelli, F.
AU - Flauger, R.
AU - Franceschet, C.
AU - Fuskeland, U.
AU - Ganga, K.
AU - Gao, J. R.
AU - Génova-Santos, R.
AU - Ghigna, T.
AU - Gomez, A.
AU - Gradziel, M. L.
AU - Grain, J.
AU - Grupp, F.
AU - Gruppuso, A.
AU - Gudmundsson, J. E.
AU - Halverson, N. W.
AU - Hargrave, P.
AU - Hasebe, T.
AU - Hasegawa, M.
AU - Hattori, M.
AU - Hazumi, M.
AU - Henrot-Versille, S.
AU - Herranz, D.
AU - Hill, C.
AU - Hilton, G.
AU - Hirota, Y.
AU - Hivon, E.
AU - Hlozek, R.
AU - Hoang, D. T.
AU - Hubmayr, J.
AU - Ichiki, K.
AU - Iida, T.
AU - Imada, H.
AU - Ishimura, K.
AU - Ishino, H.
AU - Jaehnig, G. C.
AU - Jones, M.
AU - Kaga, T.
AU - Kashima, S.
AU - Kataoka, Y.
AU - Katayama, N.
AU - Kawasaki, T.
AU - Keskitalo, R.
AU - Kibayashi, A.
AU - Kikuchi, T.
AU - Kimura, K.
AU - Kisner, T.
AU - Kobayashi, Y.
AU - Kogiso, N.
AU - Kogut, A.
AU - Kohri, K.
AU - Komatsu, E.
AU - Komatsu, K.
AU - Konishi, K.
AU - Krachmalnicoff, N.
AU - Kuo, C. L.
AU - Kurinsky, N.
AU - Kushino, A.
AU - Kuwata-Gonokami, M.
AU - Lamagna, L.
AU - Lattanzi, M.
AU - Lee, A. T.
AU - Linder, E.
AU - Maffei, B.
AU - Maino, D.
AU - Maki, M.
AU - Mangilli, A.
AU - Martínez-González, E.
AU - Masi, S.
AU - Mathon, R.
AU - Matsumura, T.
AU - Mennella, A.
AU - Migliaccio, M.
AU - Minami, Y.
AU - Mistuda, K.
AU - Molinari, D.
AU - Montier, L.
AU - Morgante, G.
AU - Mot, B.
AU - Murata, Y.
AU - Murphy, J. A.
AU - Nagai, M.
AU - Nagata, R.
AU - Nakamura, S.
AU - Namikawa, T.
AU - Natoli, P.
AU - Nerval, S.
AU - Nishibori, T.
AU - Nishino, H.
AU - Nomura, Y.
AU - Noviello, F.
AU - O’Sullivan, C.
AU - Ochi, H.
AU - Ogawa, H.
AU - Ogawa, H.
AU - Ohsaki, H.
AU - Ohta, I.
AU - Okada, N.
AU - Okada, N.
AU - Pagano, L.
AU - Paiella, A.
AU - Paoletti, D.
AU - Patanchon, G.
AU - Piacentini, F.
AU - Pisano, G.
AU - Polenta, G.
AU - Poletti, D.
AU - Prouvé, T.
AU - Puglisi, G.
AU - Rambaud, D.
AU - Raum, C.
AU - Realini, S.
AU - Remazeilles, M.
AU - Roudil, G.
AU - Rubiño-Martín, J. A.
AU - Russell, M.
AU - Sakurai, H.
AU - Sakurai, Y.
AU - Sandri, M.
AU - Savini, G.
AU - Scott, D.
AU - Sekimoto, Y.
AU - Sherwin, B. D.
AU - Shinozaki, K.
AU - Shiraishi, M.
AU - Shirron, P.
AU - Signorelli, G.
AU - Smecher, G.
AU - Spizzi, P.
AU - Stever, S. L.
AU - Stompor, R.
AU - Sugiyama, S.
AU - Suzuki, A.
AU - Suzuki, J.
AU - Switzer, E.
AU - Takaku, R.
AU - Takakura, H.
AU - Takakura, S.
AU - Takeda, Y.
AU - Taylor, A.
AU - Taylor, E.
AU - Terao, Y.
AU - Thompson, K. L.
AU - Thorne, B.
AU - Tomasi, M.
AU - Tomida, H.
AU - Trappe, N.
AU - Tristram, M.
AU - Tsuji, M.
AU - Tsujimoto, M.
AU - Tucker, C.
AU - Ullom, J.
AU - Uozumi, S.
AU - Utsunomiya, S.
AU - Van Lanen, J.
AU - Vermeulen, G.
AU - Vielva, P.
AU - Villa, F.
AU - Vissers, M.
AU - Vittorio, N.
AU - Voisin, F.
AU - Walker, I.
AU - Watanabe, N.
AU - Wehus, I.
AU - Weller, J.
AU - Westbrook, B.
AU - Winter, B.
AU - Wollack, E.
AU - Yamamoto, R.
AU - Yamasaki, N. Y.
AU - Yanagisawa, M.
AU - Yoshida, T.
AU - Yumoto, J.
AU - Zannoni, M.
AU - Zonca, A.
N1 - Funding Information: This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan, by JSPS Core-to-Core Program, A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian contribution to the LiteBIRD phase A is supported by the Italian Space Agency (ASI Grant No. 2016-24- H.1-2018) and the National Institute for Nuclear Physics (INFN). The French contribution to the LiteBIRD phase A is supported by the Centre National d?Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat ? l?Energie Atomique (CEA). A Concurrent Design Facility study focused on the MHFT and Sub-Kelvin coolers has been led by the European Space Agency (ESA). The Canadian contribution to LiteBIRD is supported by the Canadian Space Agency. The US contribution is supported by NASA Grant no. 80NSSC18K0132. Funding Information: This work was supported by World Premier International Research Center Initiative (WPI), MEXT, Japan, by JSPS Core-to-Core Program, A. Advanced Research Networks, and by JSPS KAKENHI Grant Numbers JP15H05891, JP17H01115, and JP17H01125. The Italian contribution to the LiteBIRD phase A is supported by the Italian Space Agency (ASI Grant No. 2016-24- H.1-2018) and the National Institute for Nuclear Physics (INFN). The French contribution to the LiteBIRD phase A is supported by the Centre National d’Etudes Spatiale (CNES), by the Centre National de la Recherche Scientifique (CNRS), and by the Commissariat à l’Energie Atomique (CEA). A Concurrent Design Facility study focused on the MHFT and Sub-Kelvin coolers has been led by the European Space Agency (ESA). The Canadian contribution to LiteBIRD is supported by the Canadian Space Agency. The US contribution is supported by NASA Grant no. 80NSSC18K0132. Publisher Copyright: © 2020, The Author(s).
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
AB - Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA’s H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy’s foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun–Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.
KW - Cosmic microwave background
KW - Inflation
KW - Polarization
KW - Primordial gravitational wave
KW - Satellite
UR - http://www.scopus.com/inward/record.url?scp=85078443923&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078443923&partnerID=8YFLogxK
U2 - 10.1007/s10909-019-02329-w
DO - 10.1007/s10909-019-02329-w
M3 - Article
AN - SCOPUS:85078443923
SN - 0022-2291
VL - 199
SP - 1107
EP - 1117
JO - Journal of Low Temperature Physics
JF - Journal of Low Temperature Physics
IS - 3-4
ER -