Using atomic clustering based on structural and electronic descriptors that consider surrounding environment to evaluate local properties of DFT functionals

Yuya Nakajima, Takuto Ohmura, Junji Seino*

*この研究の対応する著者

研究成果: Article査読

抄録

We developed a method for evaluating the accuracies of the local properties of DFT functionals in detail using a clustering method based on machine learning and structural/electronic descriptors. We generated 36 clusters consistent with human intuition using 30,436 carbon atoms from the QM9 dataset. The results were used to evaluate 13C NMR chemical shifts calculated using 84 DFT functionals. Carbon atoms were grouped based on their similar environments, reducing errors within these groups. This enables more accurate assessment of the accuracy using a specific DFT functional. Therefore, the present atomic clustering provides more detailed insight into accuracy verification.

本文言語English
ページ(範囲)1870-1879
ページ数10
ジャーナルJournal of Computational Chemistry
45
21
DOI
出版ステータスPublished - 2024 8月 5

ASJC Scopus subject areas

  • 化学一般
  • 計算数学

フィンガープリント

「Using atomic clustering based on structural and electronic descriptors that consider surrounding environment to evaluate local properties of DFT functionals」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル