Using high-order transport theorems for implicitly defined moving curves to perform quadrature on planar domains

Felix Scholz, Bert Jüttler

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The numerical integration over a planar domain that is cut by an implicitly defined boundary curve is an important problem that arises, for example, in unfitted finite element methods and in isogeometric analysis on trimmed computational domains. In this paper, we introduce a a very general version of the transport theorem for moving domains defined by implicitly defined curves and use it to establish an efficient and accurate quadrature rule for this class of domains. In numerical experiments it is shown that the method achieves high orders of convergence. Our approach is suited for high-order geometrically unfitted finite element methods as well as for high-order trimmed isogeometric analysis.

本文言語English
ページ(範囲)2138-2162
ページ数25
ジャーナルSIAM Journal on Numerical Analysis
59
4
DOI
出版ステータスPublished - 2021

ASJC Scopus subject areas

  • 数値解析
  • 計算数学
  • 応用数学

フィンガープリント

「Using high-order transport theorems for implicitly defined moving curves to perform quadrature on planar domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル