Variable-length coding with cost allowing non-vanishing error probability

Hideki Yagi, Ryo Nomura

研究成果: Article査読

6 被引用数 (Scopus)

抄録

We consider fixed-to-variable length coding with a regular cost function by allowing the error probability up to any constant ϵ. We first derive finite-length upper and lower bounds on the average codeword cost, which are used to derive general formulas of two kinds of minimum achievable rates. For a fixed-to-variable length code, we call the set of source sequences that can be decoded without error the dominant set of source sequences. For any two regular cost functions, it is revealed that the dominant set of source sequences for a code attaining the minimum achievable rate under a cost function is also the dominant set for a code attaining the minimum achievable rate under the other cost function. We also give general formulas of the second-order minimum achievable rates.

本文言語English
ページ(範囲)1683-1692
ページ数10
ジャーナルIEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences
E100A
8
DOI
出版ステータスPublished - 2017 8月
外部発表はい

ASJC Scopus subject areas

  • 信号処理
  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 電子工学および電気工学
  • 応用数学

フィンガープリント

「Variable-length coding with cost allowing non-vanishing error probability」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル