Variational deep embedding mines concepts from comprehensive optimal designs

Kazuki Minowa, Kikuo Fujita*, Yutaka Nomaguchi, Shintaro Yamasaki, Kentaro Yaji

*この研究の対応する著者

研究成果: Chapter

抄録

This paper aims at exploring the possibility of mining design concepts from superior design samples, which are comprehensively generated by computa tional optimization, by means of the variational deep embedding (VaDE), which is a technique of deep learning with dimensionality reduction and clustering. The relationships between concepts and entities have been a crucial question in design research. This paper reports on an experiment that a VaDE encodes a set of con ceptual designs of a bridge structure generated by a topology optimization tech nique into a set of clusters that are represented as Gaussian distributions in the latent space. In this experiment, it is confirmed that each cluster corresponds to a repre sentative design concept and that its associated subspace corresponds to a classi f ication of design possibilities. Following such a result, the promises and challenges of concept mining are discussed.

本文言語English
ホスト出版物のタイトルDesign Computing and Cognition'20
出版社Springer International Publishing
ページ643
ページ数1
ISBN(電子版)9783030906252
ISBN(印刷版)9783030906245
DOI
出版ステータスPublished - 2022 2月 24
外部発表はい

ASJC Scopus subject areas

  • コンピュータサイエンス一般
  • 心理学一般
  • 工学一般

フィンガープリント

「Variational deep embedding mines concepts from comprehensive optimal designs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル