Verified eigenvalue evaluation for the laplacian over polygonal domains of arbitrary shape

Xuefeng Liu, Shin'ichi Oishi

研究成果: Article査読

52 被引用数 (Scopus)

抄録

The finite element method (FEM) is applied to bound leading eigenvalues of the Laplace operator over polygonal domains. Compared with classical numerical methods, most of which can only give concrete eigenvalue bounds over special domains of symmetry, our proposed algorithm can provide concrete eigenvalue bounds for domains of arbitrary shape, even when the eigenfunction has a singularity. The problem of eigenvalue estimation is solved in two steps. First, we construct a computable a priori error estimation for the FEM solution of Poisson's problem, which holds even for nonconvex domains with reentrant corners. Second, new computable lower bounds are developed for the eigenvalues. Because the interval arithmetic is implemented throughout the computation, the desired eigenvalue bounds are expected to be mathematically correct. We illustrate several computation examples, such as the cases of an L-shaped domain and a crack domain, to demonstrate the efficiency and flexibility of the proposed method.

本文言語English
ページ(範囲)1634-1654
ページ数21
ジャーナルSIAM Journal on Numerical Analysis
51
3
DOI
出版ステータスPublished - 2013

ASJC Scopus subject areas

  • 数値解析
  • 計算数学
  • 応用数学

フィンガープリント

「Verified eigenvalue evaluation for the laplacian over polygonal domains of arbitrary shape」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル