Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data

Reinhard Farwig*, Hideo Kozono, Hermann Sohr

*この研究の対応する著者

研究成果: Article査読

33 被引用数 (Scopus)

抄録

We investigate the nonstationary Navier-Stokes equations for an exterior domain Ω ⊂ R3 in a solution class Ls(0,T; L q(Ω)) of very low regularity in space and time, satisfying Serrin's condition 2/s + 3/q = 1 but not necessarily any differentiability property. The weakest possible boundary conditions, beyond the usual trace theorems, are given by u|∂Ω = g ε Ls(0,T; W-1/q,q(∂Ω)), and will be made precise in this paper. Moreover, we suppose the weakest possible divergence condition k = div u ε Ls (0,T; Lr(Ω)), where 1/3 + 1/q = 1/r.

本文言語English
ページ(範囲)127-150
ページ数24
ジャーナルJournal of the Mathematical Society of Japan
59
1
DOI
出版ステータスPublished - 2007 1月
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル