Vibration transport system for lunar and Martian regolith using dielectric elastomer actuator

M. Adachi*, K. Hamazawa, Y. Mimuro, Hiroyuki Kawamoto


    研究成果: Article査読

    17 被引用数 (Scopus)


    An electrostatic transport system for lunar and Martian regolith particles was developed to realize In-Situ Resource Utilization for the successful long-term exploration of the Moon and Mars. The new system utilizes the dielectric elastomer actuator (DEA), which consists of a dielectric elastomer film sandwiched between elastic plate electrodes. When a high AC voltage is applied to the electrodes, the dielectric elastomer is driven by Maxwell stress and the resultant vibration is utilized to transport the regolith. The system has no mechanical drives and does not need complicated controls or high power consumption; thus, it is highly reliable for space application. In this study, the motions of regolith particles on a vibrating plate in the Earth and Moon environments were firstly investigated using a simple model calculation. Then, two types of vibration transport systems using DEA were developed based on the calculation results, and the basic characteristics of vibration transport for regolith were experimentally determined. The calculation result shows that the acceleration of the vibrating plate is the key factor for the success of vibration transport, and the lunar regolith simulant FJS-1 could be experimentally transported at a feed rate of approximately 1.95 g/s on the Earth using one of the developed system types when the plate acceleration exceeded 14.7 m/s2. It is expected that the transport performance of the system will be improved in the Moon environment owing to the absence of air drag and the small gravitational force.

    ジャーナルJournal of Electrostatics
    出版ステータスPublished - 2017 10月 1

    ASJC Scopus subject areas

    • 電子材料、光学材料、および磁性材料
    • バイオテクノロジー
    • 凝縮系物理学
    • 表面、皮膜および薄膜
    • 電子工学および電気工学


    「Vibration transport system for lunar and Martian regolith using dielectric elastomer actuator」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。