Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

H. Yamaguchi*, K. Takamori, P. Perrier, I. Graur, Y. Matsuda, T. Niimi


研究成果: Article査読

13 被引用数 (Scopus)


The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

ジャーナルPhysics of Fluids
出版ステータスPublished - 2016 9月 1

ASJC Scopus subject areas

  • 計算力学
  • 凝縮系物理学
  • 材料力学
  • 機械工学
  • 流体および伝熱


「Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。