Vision-Touch Fusion for Predicting Grasping Stability Using Self Attention and Past Visual Images

Gang Yan, Zhida Qin, Satoshi Funabashi, Alexander Schmitz, Tito Pradhono Tomo, Sophon Somlor, Lorenzo Jamone, Shigeki Sugano

研究成果: Conference contribution

抄録

Predicting the grasp stability before lifting an object, to be detailed, whether a gripped object will move with respect to the gripper, gives more time to modify unstable grasps compared to after-lift slip detection. Recently, deep learning relying on visual and tactile information becomes increasingly popular. However, how to combine visual and tactile data effectively is still under research. In this paper, we propose to fuse visual and tactile data by introducing self attention (SA) mechanisms for predicting grasp stability. In our experiments, we use tactile sensors (uSkin) and camera sensor (Spresense). An image of the object, not collected immediately before or during grasping, is used, as it might be more readily available. Dataset collection is done by grasping and lifting 1050 times on 35 daily objects in total with various forces and grasping positions. As a result, the predicted accuracy improves over 9% compared to previous attention-based visual-tactile fusion research. Furthermore, our analysis reveals that the introduction of self-attention mechanisms enables more effective and widespread feature extraction for both visual and tactile data.

本文言語English
ホスト出版物のタイトル2023 IEEE International Conference on Development and Learning, ICDL 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ページ339-345
ページ数7
ISBN(電子版)9781665470759
DOI
出版ステータスPublished - 2023
イベント2023 IEEE International Conference on Development and Learning, ICDL 2023 - Macau, China
継続期間: 2023 11月 92023 11月 11

出版物シリーズ

名前2023 IEEE International Conference on Development and Learning, ICDL 2023

Conference

Conference2023 IEEE International Conference on Development and Learning, ICDL 2023
国/地域China
CityMacau
Period23/11/923/11/11

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識
  • 人間とコンピュータの相互作用
  • 制御と最適化

フィンガープリント

「Vision-Touch Fusion for Predicting Grasping Stability Using Self Attention and Past Visual Images」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル