TY - JOUR
T1 - Waveform inversion for 3-D S-velocity structure of D′′ beneath the Northern Pacific
T2 - Possible evidence for a remnant slab and a passive plume 4. Seismology
AU - Suzuki, Yuki
AU - Kawai, Kenji
AU - Geller, Robert J.
AU - Borgeaud, Anselme F.E.
AU - Konishi, Kensuke
N1 - Funding Information:
We thank Barbara Romanowicz and Satoru Tanaka for their thoughtful comments and suggestions. This research was partly supported by grants from the Japanese Ministry of Education, Science and Culture (Nos. 16K05531, 15K17744 and 15H05832). Some figures were made with GMT ( http://gmt.soest.hawaii.edu ). We thank the Incorporated Research Institutions for Seismology (IRIS) for making a large dataset of high-quality data available freely. We used the waveform data from following networks: 6E (Wabash Valley Seismic Zone), 7A (MAGIC), AK (Alaska Regional Network), AZ (ANZA Regional Network), BK (Berkeley Digital Seismic Network, BDSN), CI (Southern California Seismic Network, SCSN), CN (Canadian National Seismic Network, CNSN), IU (Global Seismograph Network, GSN-IRIS/USGS), LB (Leo Brady Network), LD (Lamont-Doherty Cooperative Seismographic Network, LCSN), NN (Nevada Seismic Network), TA (USArray Transportable Array), UO (University of Oregon Regional Network), US (United States National Seismic Network, USNSN), UU (Utah Network), XD (Mount St Helens aka iMUSH), XN (Canadian Northwest Experiment, CANOE), XO (OIINK (AKA SDYNAC)), XR (SIEDCAR/UTA), XT (W Idaho Shear Zone BB/UF), XU (CAFE/UW), XV (Big Horn/UC Boulder), YW (Resolving structural control of episodic tremor and slip along the length of Cascadia, FACES/Berkeley), YX (NE-NV BB/Stanford), Z9 (Southeastern Suture of the Appalachian Margin Experiment, SESAME).
Publisher Copyright:
© 2016 The Author(s).
PY - 2016/12/1
Y1 - 2016/12/1
N2 - We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D′′ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ∼ 3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ∼ 200 km, whose lower boundary is ∼ 150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ∼ 2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (∼ 300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.
AB - We conduct waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the D′′ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. We use S, ScS, and other phases that arrive between them. Resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in this study shows three prominent features: (1) prominent sheet-like lateral high-velocity anomalies up to ∼ 3% faster than the Preliminary Reference Earth Model (PREM) with a thickness of ∼ 200 km, whose lower boundary is ∼ 150 km above the core-mantle boundary (CMB). (2) A prominent low-velocity anomaly block located to the west of the Kamchatka peninsula, which is ∼ 2.5% slower than PREM, immediately above the CMB beneath the high-velocity anomalies. (3) A relatively thin (∼ 300 km) low-velocity structure continuous from the low-velocity anomaly "(2)" to at least 400 km above the CMB. We also detect a continuous low-velocity anomaly from the east of the Kamchatka peninsula at an altitude of 50 km above the CMB to the far east of the Kuril islands at an altitude of 400 km above the CMB. We interpret these features respectively as: (1) remnants of slab material where the bridgmanite to Mg-post-perovskite phase transition may have occurred within the slab, (2, 3) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants just above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants.
KW - D′′
KW - Northern Pacific
KW - S-velocity structure
KW - Tomography
KW - Waveform inversion
UR - http://www.scopus.com/inward/record.url?scp=85001042493&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85001042493&partnerID=8YFLogxK
U2 - 10.1186/s40623-016-0576-0
DO - 10.1186/s40623-016-0576-0
M3 - Article
AN - SCOPUS:85001042493
SN - 1343-8832
VL - 68
JO - Earth, Planets and Space
JF - Earth, Planets and Space
IS - 1
M1 - 198
ER -